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ABSTRACT

The maritime tenements established for oil-search and recovery
operations are invariably defined as areas on the surface of a reference
ellipsoid with boundaries made up of meridians, parallels of latitudes,
loxodromes (lines of constant azimuth) or geodesics. Typical problems
presented to hydrographic surveyors working in this field are the
establishment of the coordinates of intersections of boundaries, the
spatial relationships between facilities and tenement boundaries and the
determination of tenement areas. While the process of computing a string
of ellipsoidal coordinates that define the plane curve between two points
is widely known, that for computing similar strings for geodesics and
loxodromes is less so. With GPS offering precise fixation at sea, the
assumption that for all practical purposes plane curves and geodesics are
the same, is now being challenged, making it necessary to treat
geodesics in a more rigorous manner. This paper reports on the
development of a software package for computations to precisely
establish maritime boundaries defined as geodesics or loxodromes.



INTRODUCTION

1. The computational problem
Maritime boundaries defining Exploration Development Titles or
Tenements are made up of a combination of parallels of latitude,
meridians, loxodromes and geodesics. Typical configurations can be seen
in Figures 1 and 2.

Figure 1 shows the Zone of Cooperation between Indonesia and Australia
and its relationship to the sea-bed boundary and the extent of the
Australian Exclusive Economic Zone (AEEZ). The sea-bed boundary is
defined by a series of loxodromes. The Zone of Cooperation is divided
into 3 sections for which differing levels of cooperation have been agreed.
The boundaries defining the total Zone of Cooperation and those
delineating the sections are geodesics. That between the two most
southern sections is coincident with the boundary of the AEEZ.

The Exploration Development Titles within the central Zone of
Cooperation are shown in Figure 2. These are defined on a graticule of
meridians and parallels of latitudes.

The principal problem is to establish a generic algorithm to determine the
geometrical relationships between any combination of the 4 types of
boundary. In brief, this includes the computation of the coordinates of the
intersection of any two boundaries, the areas of tenements, the
separation between a geodesic and loxodrome and the spatial
relationship between boundaries and discrete points within their vicinity.

Examples of intersections that can been seen in Figure 2 include:
• the sea-bed boundary (loxodrome) with the boundary of the

Zone of Cooperation (geodesic),
• the Exploration Development Title boundaries (meridian or

parallel) with those of the Zone of Cooperation (geodesic), and
• those between title boundaries made up of meridians and

parallels.

When geodesics and loxodromes are involved, these computations can
be extremely complex if attempted on the surface of the ellipsoid. They
can be simplified if undertaken on an appropriate map projection. For
example, meridians, parallels and loxodromes appear on the Mercator
projection as straight lines. Thus the computation of intersection of any



two of these lines becomes a far simpler problem on the projection than
that on the ellipsoid.

Geodesics are curved on the Mercator projection and most practically
represented as a string of coordinates connected by straight line
segments. The intersection of a geodesic with any other line can then be
done by checking each segment for an intersection. Also the separation
between geodesic and loxodrome can be easily calculated via the
Mercator projection once the string of coordinates has been computed. It
will be seen that the use of an equal area projection simplifies the
computation of tenement areas.

2. Definitions
A geodesic is the line of the shortest surface distance between two points
on a reference ellipsoid.  The azimuth varies continuously with distance
along the geodesic - the initial azimuth at a terminal can be computed by
a correction to the azimuth of the plane curve from that terminal to the
other. For geodesics of up to 3000 kilometres the length can be taken as
that of the plane curve. Plane curve azimuths and lengths can be
computed from geographical coordinates of the terminals using by the
classical formulae of Clarke, Robbins or Rudoe (see Bomford, 1962).
Alternatively, the azimuth the plane curve can be computed by vector
geometry from the geocentric coordinates of the terminals.

There are formulae available in the literature to compute the change in
latitude, longitude and azimuth of a geodesic as a function of initial
azimuth and length along the geodesic. As shown in §4, these formulae
are most useful in computations involving maritime boundaries.

A loxodrome is the line of constant azimuth on the surface of a reference
ellipsoid. The line would not be the first choice of many as a maritime
boundary but owes its popularity to its convenience in navigation. It
appears as a straight line on the Mercator projection and being of
constant azimuth, provides a simple path to navigate between two points.
Again there are formulae available (see Bowring, 1985) to compute the
change in latitude and longitude of a loxodrome as a function of initial
azimuth and length along the loxodrome. These are not used in this
development as simpler methods are available to generate a series of
geographical coordinates along a loxodrome by using the Mercator
projection.



Meridians and parallels need no definition but perhaps it should be noted
that:

• geodesics and loxodromes coincide along a meridian,
• parallels are loxodromes, but
• a geodesic between two points at the same latitude does not

follow the parallel of latitude.

ALGORITHMS

3. Computational Requirements
The algorithms required to solve problems associated with maritime
boundaries are not commonly encountered modern geodetic
computations. By and large the current approach is to express geodetic
measurements, and particularly GPS baselines, as functions of geocentric
coordinates without need to reference these to the surface on an ellipsoid.
These functions are relatively simple and for all practical purposes, exact.
Thus all the fundamental geodetic computations can be done in terms of
geocentric coordinates with the reference ellipsoid only coming into play
when wishing to transform these into geographical or map grid
coordinates.

Maritime boundaries however are defined as curves on the surface of an
ellipsoid either in terms of the latitude and longitude of their terminals or
as a distance and initial azimuth from a given starting point. While the
definition of parallels and meridians on the ellipsoid is straight forward,
geodesics and loxodromes are more difficult to deal with. Formulae are
available but they are complex, usually being expressed as a
mathematical series. They have been developed for moderate distances
that are often much shorter than the lengths that need to be considered
for large oil tenements and are when used over these longer distances
become inaccurate.

Prior to GPS the fact that the definition of maritime boundaries was of
limited accuracy was of little consequence as the precision of positioning
was low. As hydrographic surveyors now have the ability to locate craft
and structures many hundreds of kilometres offshore to a high level of
accuracy, the definition of the maritime boundaries needs to be
compatible to this positioning capability.



Algorithms required to support the treatment of complex maritime
boundaries can be considered under the following headings:

• the computation of the initial bearing and length of a geodesic
or loxodrome defined by the geographical coordinates of its
terminals,

• the computation of the geographical coordinates of the point of
intersection of any two tenement boundaries which may be
defined as a meridian, parallel, geodesic or loxodrome,

• the computation of the geographical coordinates of a point on a
geodesic or loxodrome at a given distance from a terminal,

• the generation of a series of geographical coordinates at
appropriate spacing to serve as a the "trace" of a geodesic or
loxodrome on the ellipsoid,

• the determination of the spatial relationship of a point of given
latitude and longitude to a meridian, parallel, geodesic or
loxodrome - for example the coordinates of the point on a
boundary closest to a given latitude and longitude,

• the area of tenements bounded by meridians, parallels,
geodesics or loxodromes, and

• the area and separation between the loxodrome and geodesic
which run between any two nominated points.

4. Computation of intersections of maritime boundaries
The computation of the intersection of say a loxodrome and geodesic on
the surface of the ellipsoid can be done as an iterative process using the
formulae mentioned in §(2). However, as the loxodrome, meridian and
parallel appear as straight lines on the Mercator projection, the
intersection problem can be done more simply if done on that surface.
The transformation formulae from geographical coordinates (φ, λ) to
projection coordinates are simple and can be expressed as:



E = a(λ - λ 0)
N = M(φ)

where,

M(φ) ~ is the meridian distance of the latitude φ,
λ 0 ~ the longitude of the meridian adopted as origin for the 

eastings,
a ~ the semi-major axis of the ellipsoid,
E ~ easting
N ~ northing

The expression for the meridian distance is given in Bomford(1962) or
National Mapping Council of Australia (1986).

Meridians, parallels and loxodromes can be defined on the projection by
merely transforming the geographical coordinates of their terminals into
projection coordinates. The geodesic however will appear as a curved line
on the Mercator projection. Thus it needs to be defined as a series of
points at an appropriate separation. This is done by firstly generating a
series of geographical coordinates on the ellipsoid (using the formulae
mentioned in §(2)) and then transforming these to projection coordinates.
Figure 3 shows what might be a typical tenement defined by intersections
of a segmented geodesic, meridian, parallel and loxodrome. Any
convenient  meridian can be chosen for the origin of the easting
coordinates - perhaps choosing one a little to the west of the most
westerly point in the tenement so that all easting coordinates, at least, are
positive.

The intersections between two straight lines (represented by lines 1-2 and
3-4 in Figure 4), can be done by solving for the scale factors α and β in
the vector equation:

αv12 + βv43 = v31

where,

vij ~ is the vector between points i and j.



The coordinates of the intersection point (5) are given by either of the
equations:

v5 = v1 + αv12
v5 = v3 - βv43

The elements of v5 are the coordinates of point (5) as v1, v3 and v5 are
the position vectors of the associated points.

If  α or β are negative or larger than the magnitude of the vector on which
they operate, the line segments do not intersect.

When the intersection of segmented lines (geodesics) is being
considered, each of the segments of one line needs to be checked with
each of the segments of the other until an intersection is found that lies
within the two segments being considered. This may mean significant
repeated computations before an intersection is found but the algorithm
shown above is very efficient as it requires few computer operations.
However it helps to avoid excessive computation if the segmenting of a
geodesic is initially very course - say in 10-kilometre sections. Once the
segment that intersects has been found, this can be re-segmented into
smaller sections and the intersection process repeated. This recursive
procedure can be continued until the section size is small enough to be
considered coincident with the geodesic.

6. Spatial relationships between points and boundaries
The most fundamental spatial relationship which needs to be considered
is that between a point at known latitude or longitude and any maritime
boundary. The full problem consists of finding:

• the shortest distance between the point and the boundary,

• the point on the boundary where the shortest distance
intersects, and

• the azimuth and length of the shortest line.

(Problems involving the intersection of a line through a given point on a
particular azimuth, can be treated as an intersection problem discussed in
§(5)).



The most difficult case is finding the shortest distance from a point to a
curving boundary. The algorithm adopted here is to compute the
distances from the nominated point to every point in the string that
represents the curving boundary as shown in Figure 5. The minimum sum
of any two consecutive distances (l2+l3 in the diagram) will locate the
section that contains the closest point. The procedure of re-segmenting
into smaller sections and recomputing the sub-section containing the
closest point can be repeated until the distances from the nominated point
to the two ends of the line are not significantly different.  At this stage, the
midpoint of the segment can be taken as the closest.

If the shortest distance from point to boundary is to be along a geodesic,
the algorithm needs be implemented on the surface of the ellipsoid with
the distances from nominated point to boundary points being taken as the
length of the plane curve and given by Robbins or Rudoe's formula. If the
shortest distance is to be along a loxodrome, the computation is done on
the Mercator projection.

The algorithm adopted here is more complex than what might appear to
be a simpler solution of finding the perpendicular from the nominated
point to a boundary segment on the Mercator projection. This solution
was not chosen as it gives only the shortest loxodrome from a point to a
boundary, but does not treat the shortest geodesic.

One other case that must be considered in finding the shortest distance
from a nominated point to a boundary, is when the point falls outside the
"square offset range" of a boundary - the shaded areas shown in Figure
6. In this circumstance the shortest distance will be that to the closest
terminal of the boundary.

7. Areas
The computation of the areas of polygons on the surface of the ellipsoid is
complex. Areas of lunes truncated by parallels of latitude can be
determined by a relatively simple integration (see Lauf, 1983). When
loxodromes and geodesics at random azimuths become involved, this
approach becomes complex but could be used by computing multiple
integrations of the narrow lunes formed by small segments of the
loxodrome or geodesic. As each lune would be truncated by the parallel at
the mid-latitude of the segment, the area would be approximate but by
making the segment size appropriately small this inaccuracy could be
kept to an insignificant level. This technique would give the area between



the boundary and the pole for each boundary in the tenement -
appropriate addition and subtraction of these areas would lead to the area
of a polygonal tenement.

A simpler approach, and the one used in this development, is to segment
each boundary of a tenement and project the multi-sided polygon so
formed onto an equal area projection of the reference ellipsoid. Any equal
area projection would suffice - the one chosen here is the cylindrical equal
area projection which was developed as a simplification of the Albers
Equal Area projection (U.S. Department of Commerce, 1934). It should be
noted that on this projection meridians and parallels appear as straight
lines but both geodesics and loxodromes are curved.

The transformation formulae are:

E = a(λ - λ 0)
N = a(1-e2)(sin φ + (2/3)e2 sin3 φ + (3/5)e4 sin5 φ +

(4/7)e6 sin7 φ + (5/9)e8 sin9 φ +...

where,

e ~ is the eccentricity of the ellipsoid.

Other terms have been defined previously.

The precision of both techniques depends on the section size chosen for
the segmenting of each boundary. Investigations are continuing as to
what precision is needed and subsequently the segment size to meet that
precision.

CONCLUSIONS

As indicated in the paper, computations involving the spatial relationships
between points, geodesics and loxodromes can be difficult to establish
when working with formulae for these curves on the surface of the
ellipsoid. Maritime boundaries are often defined in terms of these lines
and with GPS providing hydrographic surveyors with the ability to
precisely locate facilities at sea, the computation of boundaries need to be
done with equal precision.



The problems likely to be met by surveyors defining maritime boundaries
are listed in §(3). A software package has been developed to provide
solutions to these in which use has been made of 2 map projections to
simplify the computations. The testing completed to date indicates that
the algorithms used are well within geodetic accuracy for lines up to 500
kilometres. Further investigations are needed to evaluate their accuracy
with lines over 1000 kilometres as there is some evidence that the surface
formulae on which they are based break-down over those distances.
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Figure 1 Zone of Cooperation Between Indonesia and
Australia (not available digitally)

Figure 2 Exploration Development Titles Within the Zone of
Cooperation (not available digitally)
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Figure 3 Tenement plotted on Mercator projection and
consisting of intersecting meridians, parallels,
geodesics and loxodrome
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Figure 4 Vector diagram of intersection of boundary line
segments
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Figure 5 Locating closest segment to point of given latitude
and longitude
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Figure 6 Shaded areas are outside "square offset range" of
tenement boundaries


